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Abstract: In previous papers we’ve shown how a well known data com- 
pression algorithm called Entropy-constrained Vector Quantization (ECVQ; 
Chou, Lookabaugh and Gray, 1989) can be modified to reduce the size and 
coniplexity of very large, satellite data sets. In this paper, we discuss how 
to visualize and understand the content of such reduced data sets. We de- 
veloped a Java tool to facilitate this using simple multivariate visualization, 
and interactively performing further data reduction on user selected spatial 
subsets. This (enables analysts to compare reduced representations of the 
data for different regions and varying spatial resolutions. The ultimate aim 
is to explain physically observed differences, trends, patterns and anomolies 
in the data. 

1 Introduction 
This work came about because of challenges posed by NASA’s Earth Observ- 
ing System (EOS). EOS is a long-term data collection program for studying 
climate change, its consequences for life on Earth, and effects of human activi- 
ties on it. The centerpieces of EOS are three satellites, Terra, Aqua and Aura. 
Terra and Aqua are already in orbit, and Aura is due for launch in 2004. Each 
carries a suite of instruments that collect massive amounts of observational 
data; so massive that it is difficult to take full advantage of them. Different 
instruments have different sampling strategies, resolutions, file naming con- 
ventions, arid collect data about different physical processes. The information 
is provided to users in files corresponding to individual spacecraft orbits or 
parts of orbits, each of which can be very large, and must be stitched to- 
gether properly to provide a global or even a regional picture. To make these 
datit more acces,sible, NASA produces global summary data sets called Level 
3 data products. 

’Traditionally, Level 3 products are simple maps of mean quantities and 
standard deviations at  coarse spatial resolution, by month. In Braverman 
(2002), we proposed methods for constructing nonparametric, multivariate 
distribution estimates to replace traditional maps. For instance, the Multi- 
angle Imaging SpectroRadiometer (MISR) aboard Terra collects data about 
clouds. A key goal is to better understand the spatial distribution of clouds 
since they have great influence on Earth’s energy budget. The information 
MISR collects includes three variables seen at  high resolution: scene albedo, 
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height, and cloud presence indicator. Albedo is a measure of scene reflec- 
tivity measured roughly on a scale of zero to  one. Scene height is measured 
in meters above the Earth's surface ellipsoid. The cloud indicator is a bi- 
nary variable taking value one if the scene is cloudy, and zero otherwise. To 
summarize this information traditional Level 3 products are created by par- 
titioning one month's data into spatial subsets corresponding to one degree 
latitudelongitude grid cells. Six maps are then produced: mean and stan- 
dard deviation of albedo, mean and standard deviation of height, and mean 
and standard deviation of cloud indicator. 

The Level 3, product we proposed regards each triplet of albedo, height 
and cloud indicator as a three-element vector, and uses ECVQ to cluster 
data each grid cell. We report a set of cluster representatives, the number 
of original data points belonging to  each cluster, and within-cluster mean 
squared error, a.lso called distortion. We call this a summary, or a compressed 
or quantized version of the grid cell's data. Figure 1 illustrates. For one grid 
cell it shows a three dimensional scatterplot of the original data in light 
gray. Positions of cluster representatives are shown by the embedded balls, 
and ball shading shows cluster population according to the color bar on the 
right. Two key features of the summary are that i) cluster representatives be 
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Figure 1: Three-dimensional scatterplot of MISR albedo, height and cloudiness 
data, in light gray, for a one degree grid cell in northern Oklahoma (southwest 
corner 38"N, 98"W) in March 2000. The embedded balls show the locations of 
cluster representatives. The ball colors show cluster populations using the gray- 
scale color bar on the right. 
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centroids of cluster members, and ii) data vectors must be assigned to clusters 
with the nearest (euclidian distance) representatives. This ensures that mean 
squared error between grid cell data points and their representatives are a t  
least locally minimized, and that representatives and mean squared errors 
resulting from aggregation to coarser resolutions will be properly preserved. 
Details of the algorithm like the one used to produce these summaries can 
be found in Braverman et al. (2003). 

Starting with a monthly summary of MISR cloud data at one degree res- 
olu tion, our challenge is to discover and understand how relationships among 
grid cell distributions change spatially, and over different resolutions. In 
other words, instead of examining spatial patterns of average behavior and 
variability only, we want to examine spatial patterns of other distributional 
characteristics :Such as the number of modes, presence of outliers, and nonlin- 
ear regressions. This requires interactively comparing summaries of different 
grid cells, and of aggregated spatial areas. Thus, we want to  quickly visual- 
ize summaries, ,md construct summaries of summaries in hierarchical fashion. 
The main subject of this paper is the Java tool L3View, written to facilitate 
this. 

2 L3View 

The basic data structure underlying L3View is a 180 x 360 array of objects 
called L3Cell’s. An L3Cell contains a variable-length vector of Cluster ob- 
jects, with the number of objects depending on grid cell data complexity. A 
Cluster records a three-dimensional cluster representative, a cluster count, 
and a within-cluster mean squared error. L3View presents a map of the 
world, and when the user clicks on it the with the mouse, L3View translates 
the mouse position into geographic coordinates. L3View opens a separate 
window, and displays a simple, multivariate visualization of the summary for 
the one degree grid cell a t  that location. Further, the user can select a subre- 
gion of the map with a rubberband box, and choose to summarize summaries 
of all grid cells within the box. This too is shown in a new window using the 
simple multivariate display. 

2.1 

The left panel of Figure 2 is a screenshot of the main L3View control panel. 
L3View uses Java Swing components to interact with users. The image dis- 
played is constructed from information in the grid cells’ clusters and combined 
with a GIF file containing continental outlines using Java image processing 
functions. L3View knows the position of the mouse in a graphic coordinate 
space native to the underlying Java object type, JPanel. L3View has meth- 
ods to convert back and forth between this coordinate system, the 180 x 360 
grid, and latitude and longitude. Latitude and longitude are displayed in- 
teractively as the mouse is moved, and the tool knows when the mouse is 
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Figure 2: L3View main control panel showing MISR cloud fraction for March 2000. 

clicked, dragged, or leaves the map area. Clicking on a grid cell spawns a 
GraphView window, which contains three graphics for visualizing the clusters 
representing that grid cell’s data. 

If the mouse is used to isolate a rectangular geographic region with a 
rubberband box, LSView calculates the corresponding geographic and index 
limits. These are subsequently used in two cases. First, if the Zoom button 
is pushed, a new window containing a magnified image of the isolated area 
is spawned. Second, if the Aggregate button is pushed, all clusters from all 
grid cells inside the box are summarized, and the result is displayed in a new 
Graphview window. The lambda text box accepts user specified values for 
a parameter of the summarization algorithm that specifies how much data 
reduction is applied. This is discussed in Section 3. 

Finally, the Set Maximum and Set Split sliders are used to study spatial 
patterns in the cumulative distribution function of the display variable. Set 
Maximum truncates the upper end of the color scale so that all grid cells with 
display values at or above the maximum display white. Set split is similar: 
all values above the split value are displayed white, while all values below the 
split value display in black. 

2.2 The Graphview Window 

The Graphview window is a simple, three panel multivariate visualization 
of a. set of clusters. A typical GraphView window is shown in Figure 3. It 
includes two bar plots and a parallel coordinate plot. The bar plots are two 
instances of the same class, instantiated to display cluster counts and mean 
squared errors (distortions). Each has one bar per cluster, and bars are sorted 
in order of increasing cluster count. Actual values of counts and distortions 
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Figure 3: A GraphView window showing the summary of MISR albedo, height and 
cloud indicator for the grid cell with southwest corner 36’N, 98’W over northern 
Oklahoma. A zoom-in view of the parallel coordinate plot legend is shown in 
superimposed box. 

relakive to the norms of corresponding cluster representatives, are shown at 
the bars’ left edges. Though not apparent in these b l x k  and white figures, 
bars are colored using a scheme that transitions smoothly from blue to red 
with increasing count. 

The parallel coordinate plot occupies the right side of the window. Each 
line plot shows the representative values of albedo, scene height, and cloudi- 
ness for a single cluster on scales normalized using the global means and 
standard deviations. These are shown at  the bottom of the parallel coordi- 
nate plot area. Lines are color coded to match bars in the other two panels 
so users can see which representatives belong to which clusters. In addi- 
tion, clicking on any bar or any line highlights the bars and line in all plot 
corxesponding to that cluster. 

GraphView windows are spawned to  visualize a set of clusters, either for 
a single grid celll or when a set of grid cells are to be summarized collectively. 
In the latter case, one could simply display the entire collection of clusters, 
but that would become more unwieldy for large are% as more clusters are 
included. Complexity of the parallel coordinate plots could grow to the point 
where it is impossible to resolve individual lines. Therefore, distributions 
represented by cluster sets must be summarized before they are displayed. 
The next section describes the theoretical rationale for this. 
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3 Hierarchical Aggregation and Quantization 
Braverman (2002) described how entropy-onstrained vector quantization 
(ECVQ; Chou, Lookabaugh and Gray, 1989) is modified to function as a 
data reduction tool for large, spatial data sets. The basic idea is to partition 
these data into one degree spatial subsets, and use ECVQ to cluster the 
subsets in a coordinated way. ECVQ is a randomized, iterative algorithm 
similar to K-means, except it minimizes the expected value of the penalized 
loss function, 

X represents a randomly drawn observation from the empirical distribution 
of the grid cell's data. a(X) is an integer that specifies the id number of 
the cluster to which X is assigned, and q(X) is the corresponding cluster 
centroid. N is the total number of data points in the grid cell, N,(x) is the 
number of data points assigned to the same cluster as X, and the logarithm is 
base two. X is a fixed parameter that specifies how important the second term 
on the right in Equation (1) is. For K-means, one must specify K ,  the number 
of clusters a priori. For ECVQ, one must specify K, the maximum allowable 
nurnber of clusters, and A. The algorithm then determines the number of 
clusters and the assignment of data points to them. We added a final step 
in which each data point is subsequently reassigned to the cluster with the 
nearest euclidian distance representative, and the representatives updated 
again. This ensures cluster representatives are centroids of cluster members, 
and mean squared errors between data points and their representatives are 
minimized. In Braverman (2003) we introduced a further modification of 
ECVQ in which X is a random variable having the distribution of q ( X )  rather 
than the original empirical distribution of the data. In other words, we allow 
realizations to :have unequal mass. That is precisely the situation in which 
we find ourselves when summarizing sets of clusters formed by combining 
multiple grid cells. 

Consider Figure 4. It shows a schematic representation of a one degree 
spatial grid. Each grid cell contains a summary instantiated as an L3Cell 
object. Figure 4 also shows a two degree grid cell superimposed, and sup- 
pose we want to summarize the four, one degree L3Cell's inside. Let Xluv  
be (a random variable having the distribution of the summary for the one 
degree grid cell with southwest corner a t  row u and column u. Suppose this 
grid cell is the lower-left most grid cell in the light box in Figure 4, and de- 
note the other three grid cells' random variables by Xl(u+l)v, Xlu(v+l), and 
Xl(u+l)(v+l). At coarser, two degree resolution the light box is represented 
by -Y2uu, 

1 1  
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Figure 4: Schematic representation of a gridded map. The large rectangle repre- 
sents a 180 x 360 array shown broken into 3 x 6 = 18, 60 x 60 arrays. Each of 
these is further :subdivided into a 6 x 6 array. Each cell in the 6 x 6 array is a 
10 x 10 arrangement of one degree grid cells. The lighter box illustrates how four 
one degree grid cells can make up a grid cell at coarser, two degree resolution. 

with 

and NzJ is the total number of data points represented by the summary of 
the corresponding grid cell. In other words, XzuW is a mixture of Xluv, 
 XI(^+^)^,  XI^(^+^), and Xl(u+l)(w+l) with weights equal to the proportions 
of the total count; represented by XzUw contributed by each one degree cell. 
The idea is illustrated on the left side of Figure 5,  which shows the mixture 
distribution positioned directly above the four component distributions. Any 
nesting of fine-scale grid cells in a coarser grid can be represented in a similar 
way, and ensures mass, expectation, and mean squared error are all properly 
preserved between resolutions. 

I f  data reduction were not a concern, we could proceed directly to visu- 
alizing mixture (distributions like the middle layer in Figure 5 .  However, the 
greater the number of grid cells being aggregated, the greater the number 
of support points in the mixture, and the number of corresponding clusters. 
So, we compress the mixture distribution using a mass-weighted version of 
ECVQ described in Braverman et. al., (2003), but implemented here in Java 
with the user specifying X directly via the “Set Lambda” button and text box 
in the main control panel. K, the maximum number of clusters is nominally 
set to 10, and the default value of X is zero, thus essentially implementing the 
K-means. If X ic, changed to a positive value, the algorithm becomes ECVQ. 
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Figure 5 :  A hierarchy of distributions within a two degree spatial region. The 
bottom square on the right corresponds to the 2 O  x 2' area, and shows conceptual 
representations of cluster sets for constituent one degree grid cells as histograms. 
The middle layer on the right depicts the mixture distribution formed by the union 
of the cluster sets from the one degree cells. The top layer is the reduced distribution 
after summarization. 

By first considering aggregated distributions for large areas, and then 
systematically summarizing subregions, we can begin to understand how the 
prevalence of various types of phenomena change spatially. The next section 
demonstrates how this can be done. 

4 Visual Data Mining 

As an example of how a scientist might use L3View for data exploration, we 
focus on an area. in central Africa shown in Figure 6 .  The rectangular region 
extends from latitude 1"s  to latitude 9"N, and from longitude l l 'E  to  31°E. 
The background L3View image shows cloud fraction. There is a clear differ- 
ence between the northern and southern parts of this region, approximately 
demarcated by the horizontal dashed line in embedded, zoomed-in view. The 
southern area is very cloudy, and the northern area contains grid cells varying 
cloudiness. This is consistent with the climatological location of a persistent 
band of clouds called the Inter-Tropical Convergence Zone (ITCZ). The lower 
panel of Figure 6 shows the GraphView window of the summary of the entire 
10 x 20 degree region. 

The region contains 200 grid cells, with a total of 2,099 clusters. These 
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Figure 6: Scree.nshots from L3View visualization of central Africa. Top: Main 
L3View map with embedded zoom of central Africa. Bottom: GraphView win- 
dow for the entire, aggregated central area. All the parallel coordinate plots are 
annotated to show the cluster id numbers corresponding to the individual line plots. 

represent 6,205,769 original MISR albedo-height-cloud indicator vectors. We 
begin by aggregating the whole region using the default value of X = 0 and 
the number of clusters, K ,  set to 15. The resulting GraphView summary is 
shown in the lower panel of Figure 6. The figure is small making the graph 
labels difficult to see, but we can see from the bar chart of cluster counts 
that one cluster dominates in size. Using L3View interactively, we find that 
this is cluster 9, and it contains about 30 percent of the distribution's mass. 
Cluster 9 corresponds to one of two clear clusters, 6 being the other. Cluster 
6 accounts for another eight percent of the distribution's mass. 9 and 6 have 
representatives with low albedo, low height, and are clear cloud indicators. 
This is a dark, vegetated region of jungle. Areas to its north show significant 
numbers of low altitude, bright, clear scenes. This is the Sahara desert. 
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Low cloud 
Mid-level cloud 
High cloud 
Total cloudy E m 

Joint Conditional 
North South Total North South 
0.330 0.064 0.394 
0.060 0.171 0.231 0.273 0.442 
0.094 0.114 0.207 0.426 0 295 
0.066 0.101 0.168 0.301 0.263 
0.220 0.386 0.606 1.000 1.000 
0.550 0.450 1.000 

Table 1: Joint and conditional distributions of cloud typelclear and location. 
Columns 2 ,  3, and 4 show the full, joint distribution. Columns 5 and 6 show 
the conditional (distribution of cloud type given cloudy scene, and location. 

The presencle of low, dark clouds in both the north and the south at 
this time of year is something of a surprise. To see if these clouds can be 
attributed to specific areas, we subdivided the north and south regions into 
east and west. We found no distributional differences related to  east-west 
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Figure 7:  Top: Graphview window for the aggregated area in the northern half of 
the region (above the dashed line). Bottom: GraphView window for the aggregated 
area in the southern half of the region (below the dashed line). 

division for either the north or south. We then investigated areas along the 
prominent clear/cloudy boundary in Figure 6, and contrasted them to areas 
away from the lboundary. We did this separately for east and west, but none 
of these visualizations revealed definitive distributional differences. We are 
therefore reasonably confident that Table 1 tells a complete story. 

5 Discussion 
The example of the previous section is a small scale, simple example of one 
way we think L3View may be useful for exploring spatial summaries of satel- 
lite data. Guided by the background map in the main L3View window, we 
focused on an area of interest, and hierarchically examined the data distri- 
bution summaries. We discovered that, in addition to the cloud fraction 



- 12 Amy Braverman and Brian Kahn - 

differences apparent from the background image, there is also a difference in 
the types of cloud present in the northern and southern parts of the region. 
We will have to perform many more exercises like this one to gain confidence 
that summarized data have enough detail to be scientifically useful, and to 
gain experience interpreting physically what we see in L3View. 

Two main computational issues are brought to light in this exercise. First, 
L3View’s implementation of ECVQ/K-means is not fast enough to summa- 
rize large geographic regions in reasonable time. One would ideally like to 
summarize whole hemispheres in the same sort of hierarchical exploration 
performed here. Second, we have not yet made use of the tool’s ability to 
summarize the same data for different values of A’s. We would like to look 
at data at different quantization resolutions as well as different spatial ones. 
We believe there is important information in how distributions collapse as 
greater data reduction is imposed. To achieve greater interactivity both these 
issues must be addressed. We look forward to working on these and other 
improvements to L3View as it matures. We also eagerly anticipate working 
with our geoscience colleagues to better understand the connection between 
global physical processes and their expression through rich, Earth Observing 
System data sets. 
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